Stat 201: Introduction to Statistics

Standard 28: Significance Test - Means

Confidence Intervals to Testing

- We've seen earlier that we can come up with interesting observations of our confidence intervals
- Next we will learn how to formally test whether or not the population mean is a particular value based off our sample mean

Hypothesis Test for Means: Step 1

- State Hypotheses: it's usually easier to write the alternative hypothesis first
- Null hypothesis: that the population mean equals some μ_{o}
- $H_{o}: \mu \leq \mu_{o}$ (one sided test)
- $H_{o}: \mu \geq \mu_{o}$ (one sided test)
- $H_{o}: \mu=\mu_{o}$ (two sided test)
- Alternative hypothesis: What we're interested in
- $H_{a}: \mu>\mu_{o}$ (one sided test)
- $H_{a}: \mu<\mu_{o}$ (one sided test)
- Ha: $\mu \neq \mu_{o}$ (two sided test)

Hypothesis Test for Means: Step 2

- Check the assumptions
- The variable must be quantitative
- The data are obtained using randomization
- We're dealing with data from the normal distribution
- If $n>30$
- If a histogram of the data is approximately normal which indicates that the probability is normal

Hypothesis Test for Means: Step 3

- When we don't know σ_{x}
- Calculate Test Statistic, t*
- The test statistic measures how different the sample mean we have is from the null hypothesis
- We calculate the t-statistic by assuming that μ_{0} is the population mean

$$
t^{*}=\frac{\left(\bar{x}-\mu_{o}\right)}{\frac{s_{x}}{\sqrt{n}}}
$$

Hypothesis Test for Means: Step 3

- When we know σ_{x}
- Calculate Test Statistic, z*
- The test statistic measures how different the sample mean we have is from the null hypothesis
- We calculate the t-statistic by assuming that μ_{0} is the population mean

$$
z=\frac{\left(\bar{x}-\mu_{o}\right)}{\frac{\sigma_{x}}{\sqrt{n}}}
$$

Hypothesis Test for Means: Step 4

- When we don't know σ_{x}
- Determine the P -value
- The P-value describes how unusual the data would be if H_{o} were true.
- We will use software or your calculator to find this, or I will give it to you.

Alternative Hypothesis	Probability	Formula for the $\mathrm{P}-\mathrm{value}$
$H_{a}: \mu>\mu_{0}$	Right tail	$\mathrm{P}\left(\mathrm{T}>\mathrm{t}^{*}\right)=1-\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)$
$H_{a}: \mu<\mu_{0}$	Left tail	$\mathrm{P}\left(\mathrm{T}<\mathrm{t}^{*}\right)$
$H_{a}: \mu \neq \mu_{0}$	Two-tail	$2^{*} \mathrm{P}\left(\mathrm{T}<-\left\|\mathrm{t}^{*}\right\|\right)$

Hypothesis Test for Proportions: Step 4

- When we know σ_{x}
- Determine the P-value
- The P-value describes how unusual the sample data would be if H_{o} were true, which is what we're assuming ($\mu=\mu_{0}$).
$-z^{*}$ is the test statistic from step 3

Alternative Hypothesis	Probability	Formula for the $\mathrm{P}-$ value
$H_{a}: \mu>\mu_{o}$	Right tail	$\mathrm{P}\left(\mathrm{Z}>\mathrm{z}^{*}\right)=1-\mathrm{P}\left(\mathrm{Z}<\mathrm{z}^{*}\right)$
$H_{a}: \mu<\mu_{0}$	Left tail	$\mathrm{P}\left(\mathrm{Z}<\mathrm{z}^{*}\right)$
$H_{a}: \mu \neq \mu_{0}$	Two-tail	$2^{*} \mathrm{P}\left(\mathrm{Z}<-\left\|\mathrm{z}^{*}\right\|\right)$

Hypothesis Test for Means: Step 5

- Summarize the test by reporting and interpreting the P-value
- Smaller p-values give stronger evidence against H_{o}
- If p-value $\leq(1-$ confidence $)=\alpha$
- Reject H_{o}, with a p-value =__, we have sufficient evidence that the alternative hypothesis might be true
- If p-value $>(1-$ confidence $)=\alpha$
- Fail to reject H_{0}, with a p-value $=\ldots$, we do not have sufficient evidence that the alternative hypothesis might be true

Hypothesis Test for Means- Step Five with Pictures

- For a left tailed test: $H_{a}: \mu<\mu_{o} \rightarrow$ We have rejection regions for H_{o} are as follows

Confidence	Reject (test stat)	Reject (p-value)
0.90	Test-stat $<-t_{.10, n-1}$	P-value $<.1$
0.95	Test-stat $<-t_{.05, n-1}$	P-value $<.05$
0.99	Test-stat $<-t .01, n-1$	P-value $<.01$

Zoom In

Hypothesis Test for Means- Step Five with Pictures

- For a left tailed test: $H_{a}: \mu>\mu_{o} \rightarrow$ We have rejection regions for H_{o} are as follows

Confidence	Reject (test stat)	Reject (p-value)
0.90	Test-stat<-t.90,n-1	P -value<. 1
0.95	Test-stat<-t.95,n-1	P-value<. 05
0.99	Test-stat<-t.99,n-1	P-value<. 01

Zoom In

Hypothesis Test for Means- Step Five with Pictures

- For a two tailed test: $H_{a}: \mu \neq \mu_{o} \rightarrow$ We have rejection regions for H_{o} are as follows

Confidence	Reject (test stat)	Reject (p-value)	
0.90	\| Test-stat	<-t.90,n-1	P -value<. 1
0.95	\mid Test-stat $\mid<-t_{.95, n-1}$	P -value<. 05	
0.99	\| Test-stat	<-t.99,n-1	P-value<. 01

Zoom In

Hypothesis Test for Means- Step Five

- The pictures are the same when we know z as they are for proportions.
- In almost all feasible cases we will not know σ_{x} as is t is usually unrealistic to know it

Example 1

- It is often hypothesized that Velociraptors were warm blooded creatures, some scientists guessed their normal blood temperature was 87.5 degrees. Test whether or not the mean differs from 87.5 degrees at a .05 significance level, or 95\% confidence.
- A random sample of thirteen Velociraptors during the shooting of Jurassic Park gave the data below 88.6, 86.4, 87.2, 87.4, 87.2, 87.6, 86.8, 86.1, 87.4, 87.3, 86.4, 86.6, 87.1

Example 1 - Step One

- A random sample of thirteen Velociraptors during the shooting of Jurassic Park gave the data below 88.6, 86.4, 87.2, 87.4, 87.2, 87.6, 86.8, 86.1, 87.4, 87.3, 86.4, 86.6, 87.1
- State the Hypotheses: we are interested in whether or not the mean is not equal to 87.5 degrees

$$
\begin{aligned}
& -H_{o}: \mu=87.5 \\
& -H_{a}: \mu \neq 87.5
\end{aligned}
$$

Example 1 - Step Two

- A random sample of thirteen Velociraptors during the shooting of Jurassic Park gave the data below 88.6, 86.4, 87.2, 87.4, 87.2, 87.6, 86.8, 86.1, 87.4, 87.3, 86.4, 86.6, 87.1
- Check Assumptions:
- The data is quantitative
- The sample is randomly selected
- Even though $\mathrm{n}<30$, a histogram of the data shows approximately normal

See, I told you. (close enough for us)

Histogram of x

Example 1 - Step Three

- Calculate Test Statistic

Variable	Sample Mean (\bar{x})	Standard Deviation $\left(s_{x}\right)$	Standard Error $\left(s_{\bar{x}}\right)$
Blood Temperature	87.0846	.6492	.1800
$\qquad t=\frac{\left(\bar{x}-\mu_{o}\right)}{\frac{s}{\sqrt{n}}}=\frac{87.08-87.5}{\frac{.6492}{\sqrt{13}}}=\frac{.42}{.1800}=-2 . \overline{33}$			

Example 1 - Step Four

- Determine P-value
P-value from software is . 0397

Example 1 - Step Five

- State Conclusion
- Since . $0397<.05$ we reject H_{o}

At the .05 level of significance, or 95% confidence level, there is sufficient evidence that the mean blood temperature is different than 87.5.

Example 1 - Step Five with pictures

- State Conclusion
- Anything with a p-value<. 05 or a
$\mid \mathrm{t}$-value $\left\lvert\,>t_{1-\frac{\alpha}{2}, n-1}=t_{.975,12}=2.179\right.$ will be in the rejection region
- Since .2932>. 05 we fail to reject H_{o}

Zoom In

Example

- Suppose a random sample of 38 yearly average temperature measures in New Haven, CT. Among the sampled years the sample mean temperature was 51.0474 degrees Fahrenheit with a sample standard deviation of 1.3112.
- Test whether or not the population mean differs from 50 degrees at a .05 significance level, or 95\% confidence.

Example - Step One

- State the Hypotheses: we are interested in whether or not the mean is not equal to 50 degrees
$-H_{o}: \mu=50$
$-H_{a}: \mu \neq 50$

Example - Step Two

- Check Assumptions:
- The data is quantitative
- The sample is randomly selected
$-n>30$ so it is safe to assume the sampling distribution for the sample mean is normal

Example - Step Three

- Calculate Test Statistic

Variable	Sample Mean (\bar{x})	Standard Deviation (S_{x})	Standard Error ($s_{\bar{x}}$)
Yearly Temperature	51.0474	1.3112	. 2127047
$t=\frac{\left(\bar{x}-\mu_{o}\right)}{\frac{s}{\sqrt{n}}}$	$=\frac{51.0474-}{\frac{1.3112}{\sqrt{38}}}$	$\underline{50}=\frac{1.0474}{.2127047}$	$=4.924198$

Example - Step Four

- Determine P-value

$$
\begin{aligned}
P \text { value } & =2 * P\left(T<-\left|t^{*}\right|\right) \\
& =2 * P(T<-|4.924198|) \\
& =2 * P(T<-4.924198) \\
& =.00001782519
\end{aligned}
$$

Example - Step Five

- State Conclusion
- Since $.00001782519<.05$ we reject H_{o}

At the .05 level of significance, or 95% confidence level, there is sufficient evidence that the mean yearly temperature is different than 50 degrees.

Example - Step Five with pictures

- State Conclusion
- Anything with a p-value<. 05 or a
$\mid t$-value $\left\lvert\,>t_{1-\frac{\alpha}{2}, n-1}=t_{.975,37}=2.026192\right.$ will be in the rejection region
- By P-value:
- Since $.00001782519>.05$ we reject H_{o}
- By T-statistic:
- Since |4.924198|>2.026192 we reject H_{o}

Zoom In

Hypothesis Testing for Means in Your TI Calculator

- Hypothesis testing for means
- https://www.youtube.com/watch?v=StpX5 AHKSs
- https://www.youtube.com/watch?v=31fFfsSmuK8
- https://www.youtube.com/watch?v=dyjOMjvu mQ

Hypothesis Testing for Means in Your TI Calculator

- When we don't know σ_{x}, with data
- INPUT:

1. Press STAT
2. Press \rightarrow to TESTS
3. Highlight ' 2 : T -Test' and Press ENTER
4. With Data
5. Enter the we're interested in next to ' μ_{0} :'
6. You should have your data table entered in L1

- If you forgot: Press STAT, Press ENTER with 'Edit' highlighted, Enter the data into the L1 col.

3. Next to 'List:' press $2^{\text {nd }}$ then press 1
4. Set 'Frequency' to 1
5. Select the appropriate alternative hypothesis on the ' μ :' line by highlighting the correct inequality and pressing ENTER
6. Highlight Calculate and press ENTER

Hypothesis Testing for Means in Your TI Calculator

- When we don't know σ_{x}, with data
- Output:
- Confirm the first line shows the hypothesis you would like to test
$-t=$ the test statistic for our hypothesis test
$-p=$ the p-value for this test
- We make our decision based on this
$-\bar{x}$ is the sample mean for the problem and should match the number you entered
$-s_{x}$ is the sample standard deviation for the problem
-n is the sample size and should match the number you entered

Hypothesis Testing for Means in Your TI Calculator

- When we don't know σ_{x}, with stats
- INPUT:

1. Press STAT
2. Press \rightarrow to TESTS
3. Highlight ' 2 : T-Test' and Press ENTER
4. With Stats
5. Enter the we're interested in next to ' μ_{0} :'
6. Put the sample mean next to ' \bar{x} :'
7. Enter the sample standard deviation next to ' s_{x} :'
8. Put the sample size next to ' n :'
9. Select the appropriate alternative hypothesis on the ' μ :' line by highlighting the correct inequality and press ENTER
10. Highlight Calculate and press ENTER

Hypothesis Testing for Means in Your TI Calculator

- When we don't know σ_{x}, with stats
- Output:
- Confirm the first line shows the hypothesis you would like to test
- $t=$ the test statistic for our hypothesis test
$-p=$ the p-value for this test
- We make our decision based on this
$-\bar{x}$ is the sample mean for the problem and should match the number you entered
$-s_{x}$ is the sample standard deviation for the problem
-n is the sample size and should match the number you entered

Hypothesis Testing for Means in Your TI Calculator

- When we know σ_{x}, with data
- INPUT:

1. Press STAT
2. Press \rightarrow to TESTS
3. Highlight ‘1: Z-Test' and Press ENTER
4. With Data
5. Enter the we're interested in next to ' μ_{0} :'
6. Enter the population standard deviation next to ' σ :'
7. You should have your data table entered in L1

- If you forgot: Press STAT, Press ENTER with 'Edit' highlighted, Enter the data into the L1 col.

4. Next to 'List:' press $2^{\text {nd }}$ then press 1
5. Set 'Frequency' to 1
6. Select the appropriate alternative hypothesis on the ' μ :' line by highlighting the correct inequality and pressing ENTER
7. Highlight Calculate and press ENTER

Hypothesis Testing for Means in Your TI Calculator

- When we know σ_{x}, with data
- Output:
- Confirm the first line shows the hypothesis you would like to test
$-z=$ the test statistic for our hypothesis test
$-p=$ the p-value for this test
- We make our decision based on this
$-\bar{x}$ is the sample mean for the problem and should match the number you entered
$-n$ is the sample size and should match the number you entered

Hypothesis Testing for Means in Your TI Calculator

- When we know σ_{x}, with stats
- INPUT:

1. Press STAT
2. Press \rightarrow to TESTS
3. Highlight ' 2 : T-Test' and Press ENTER
4. With Stats
5. Enter the we're interested in next to ' μ_{0} :'
6. Enter the population standard deviation next to ' σ :'
7. Put the sample mean next to ' \bar{x} :'
8. Put the sample size next to ' n :'
9. Select the appropriate alternative hypothesis on the ' μ :' line by highlighting the correct inequality and press ENTER
10. Highlight Calculate and press ENTER

Hypothesis Testing for Means in Your TI Calculator

- When we know σ_{x}, with data
- Output:
- Confirm the first line shows the hypothesis you would like to test
$-z=$ the test statistic for our hypothesis test
$-p=$ the p-value for this test
- We make our decision based on this
$-\bar{x}$ is the sample mean for the problem and should match the number you entered
$-n$ is the sample size and should match the number you entered

Confidence Intervals for Means

- StatCrunch Commands w/ data
- Stat \rightarrow T Stats \rightarrow One Sample
\rightarrow with data (if you have the a list of data) \rightarrow Choose the column \rightarrow type the success value into the success box \rightarrow choose hypothesis \rightarrow enter the correct hypothesis \rightarrow Compute
- StatCrunch Commands w/ summaries
- Stat \rightarrow T Stats \rightarrow One Sample
\rightarrow with summary (if you have the count) \rightarrow enter the number of success and total observations \rightarrow enter the correct hypothesis \rightarrow Compute

Confidence Intervals known σ_{x}

Assumptions	Point Estimate	Margin of Error	Margin of Error
1. Random Sample	\bar{X}	$\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}$	$\bar{x} \pm Z \frac{\alpha}{2}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$
2. $n>30$ OR the population is bell shaped			

- We are --\% confident that the true population mean lays on the confidence interval.

Confidence Intervals unknown σ_{x}

Assumptions	Point Estimate	Margin of Error	Margin of Error
1. Random Sample	\bar{X}	$\sigma_{\bar{x}}=\frac{s_{x}}{\sqrt{n}}$	$\bar{x} \pm t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$
2. $n>30$ OR the population is bell shaped			

- We are --\% confident that the true population mean lays on the confidence interval.

Hypothesis Testing known σ_{x}

Step One:	1. $H_{0}: \mu=\mu_{0} \& H_{a}: \mu \neq \mu_{0}$ 1. $H_{0}: \mu \geq \mu_{0} \& H_{a}: \mu<\mu_{0}$ 2. $H_{0}: \mu \leq \mu_{0} \& H_{a}: \mu>\mu_{0}$
Step Two:	1. Quantitative 2. Random Sample 3. $n>30$ OR the population is bell shaped
Step Three:	$z^{*}=\frac{\left(\bar{x}-\mu_{o}\right)}{\frac{\sigma_{x}}{\sqrt{n}}}$
Step Four:	$\begin{aligned} & H_{a}: \mu \neq \mu_{0} \rightarrow \mathrm{p} \text {-value }=2^{*} \mathrm{P}\left(\mathrm{Z}<-\left\|\mathrm{z}^{*}\right\|\right) \\ & H_{a}: \mu<\mu_{0} \rightarrow \mathrm{p} \text {-value }=\mathrm{P}\left(\mathrm{Z}<\mathrm{z}^{*}\right) \\ & H_{a}: \mu>\mu_{0} \rightarrow \mathrm{p} \text {-value }=\mathrm{P}\left(\mathrm{Z}>\mathrm{z}^{*}\right)=1-\mathrm{P}\left(\mathrm{Z}<\mathrm{z}^{*}\right) \end{aligned}$
Step Five:	$\begin{gathered} \text { If } p \text {-value } \leq(1-\text { confidene })=\alpha \\ \quad \rightarrow \text { Reject } H_{0} \\ \text { If } p \text {-value }>(1-\text { confidence })=\alpha \\ \quad \rightarrow \text { Fail to Reject } H_{0} \end{gathered}$

Hypothesis Testing unknown σ_{x}

Step One:	1. $H_{0}: \mu=\mu_{0} \& H_{a}: \mu \neq \mu_{0}$ 1. $H_{0}: \mu \geq \mu_{0} \& H_{a}: \mu<\mu_{0}$ 2. $H_{0}: \mu \leq \mu_{0} \& H_{a}: \mu>\mu_{0}$
Step Two:	1. Quantitative 2. Random Sample 3. $n>30$ OR the population is bell shaped
Step Three:	$t^{*}=\frac{\left(\bar{x}-\mu_{o}\right)}{\frac{s_{x}}{\sqrt{n}}}$
Step Four:	$\begin{aligned} & H_{a}: \mu \neq \mu_{0} \rightarrow \mathrm{p} \text {-value }=2^{*} \mathrm{P}\left(\mathrm{~T}<-\left\|\mathrm{t}^{*}\right\|\right) \\ & H_{a}: \mu<\mu_{0} \rightarrow \mathrm{p} \text {-value }=\mathrm{P}\left(\mathrm{~T}<\mathrm{t}^{*}\right) \\ & H_{a}: \mu>\mu_{0} \rightarrow \mathrm{p} \text {-value }=\mathrm{P}\left(\mathrm{~T}>\mathrm{t}^{*}\right)=1-\mathrm{P}\left(\mathrm{~T}<\mathrm{t}^{*}\right) \end{aligned}$
Step Five:	$\begin{aligned} & \text { If } \mathrm{p} \text {-value } \leq(1-\text { confidene })=\alpha \\ & \rightarrow \text { Reject } H_{0} \\ & \text { If } \mathrm{p} \text {-value }>(1-\text { confidence })=\alpha \\ & \rightarrow \text { Fail to Reject } H_{0} \end{aligned}$

